Skip to content

M87* photon ring scaled one in 1.5*10^15

Advertising
Advertising
?
Creation quality: 5.0/5 (1 vote)
Evaluation of members on the printability, utility, level of detail, etc.

  • 1.6k views
  • 2 likes
  • 18 downloads

License
3D design format
STL Folder details Close
  • m87_15_10_14.stl
  • m87_eh_15_10_14.stl
  • m87_eh_north_15_10_14.stl
  • m87_eh_south_15_10_14.stl
  • m87_north_15_10_14.stl
  • m87_south_15_10_14.stl

Learn more about the formats

Publication date 2021-04-23 at 00:50
?
Published to Thingiverse on: 2021-04-22 at 20:41
Design number 409362

3D printer file info

3D model description

This is a representation of the intensity of the light emitted from around the central black hole of the galaxy M87 (named M87*). I made this using MATLAB R2020a and the images from Arras (2020), images derived from the famous images from the Event Horizon Telescope Collaboration (2019), the first "direct" images taken of a black hole ever. The original image is extremely blurred because of its short apparent diameter (angle of view). In order to get the scale, is about the same apparent size of watching a smartphone on the surface of the Moon, from Earth. This was posible using telescopes all around the globe as a giant interferometer. There are also distortion because of the gravitational lensing, and the material present there is constantly moving. I use the "day 0" of the mentioned paper, and I made correction for the gravitational lensing, simulating the path of light around the black hole. The shadow of the black hole was also compensated. I simulate the orbit of the material around for 4 days, just to give the model a "whirlpool" looking. I have to clarify that non feature shown in the model have a real correlation, the material there is orbiting in a thin flat disc around, and from 3 times the Schwarzschild radius beyond. The main brilliant ring is the photon ring, composed of photons orbiting at the speed of light, ionizing and spiralling inside the event horizon. I used Blender to smooth the borders of the disc. The part you see in the original image is the "south" side of disc. That's because of its spin direction and the right hand rule, the south direction of the rotational axis is pointing almost directly to us.

M87*
M87, or Messier object 87, is one of the biggest galaxies in the local universe, and so it is its central supermassive black. The galaxy is shaped symmetrically spherical, unlike our Milky Way, that has spiral arms instead. The very core of it has a SMBH, where emerge a jet of plasma at relativistic speed, that points near to our direction, 17° to the line of sight. The SMBH event horizon is so big that all the Solar System planets with their orbits fit inside; and it is the second largest event horizon in apparent diameter, that is, the size we see it from here. Te first event horizon in that rank is Sgr A*, Milky Way's core SMBH, because of its proximity to Earth, but Sgr A* is actually way smaller than M87*. The area represented in this model is comparable in size with our Solar System Heliosphere. A black hole whole mass is concentrated in its center, the singularity, but it's common to use the volume of the event horizon as the black hole's volume. The event horizon is not a solid surface, but a boundary from where light can no longer escape. In stellar mass black holes, the event horizon, like Cygnus X-1, have a radius, called "Schwarzschild radius", of a few tens to hundreds kilometers, comparable with a medium size asteroid, resulting in a density over billions times that of water. In contrast, super masive black holes can have a density similar or even lower than water. This is because the Schwarzschild radius is proportional to the mass, and thus, the volume grows by exponent 3 over the mass.

Type: Black hole.
Distance to the Sun: 10.638x107 ly.
Density: Infinite (singularity), 0.0004 g/cm3 (event horizon)
Model scale: 1:1.5x1015 (20cm)

References

Visible shapes of black holesM87* and SgrA. Dokuchaev. 2020
The variable shadow of M87*. Arras. 2020
First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Event Horizon Telescope Collaboration. 2019
Surf to STL function for MATLAB

Other astronomical objects



Object


Scale [1:x]
K = 103 (thousand)M = 106 (million)G = 109 (billion)


Image




Inner Solar System



Mercury
20M, 60M,
120M



Venus
60M,
120M,
250M



Earth
60M,
120M,
250M



Luna
10M, 20M,
60M



Mars
20M, 60M,
120M



Phobos and Deimos
200K,
500K




Artificial



Salyut 7
40, 48, 80, 160




Near Earth Asteroids



Moshup and Squannit
8K,
20K,
40K



Ra-Shalom
20K,
40K



Castalia
8K,
20K,
40K



Bacchus
8K,
20K



Bennu
3K,
8K



Ryugu
3K, 8K,
20K



Geographos
40K,
80K



Phaethon
40K,
80K



Itokawa
3K,
8K



Eros
80K, 200K,
500K



Nereus
3K,
8K



Mithra
20K,
40K



Golevka
8K



Toutatis
40K,
80K




Main Asteroid Belt




Gaspra
200K



Annefrank
40K,
80K



Braille
20K,
40K



Vesta
2M, 4M,
10M



Šteins
40K,
80K,
200K



Iris
2M,
4M



Hebe
1M,
2M,
4M



Lutetia
500K, 1M,
2M


3D printing settings

-

Advertising


Issue with this design? Report a problem.

Would you like to support Cults?

You like Cults and you want to help us continue the adventure independently? Please note that we are a small team of 3 people, therefore it is very simple to support us to maintain the activity and create future developments. Here are 4 solutions accessible to all:

  • ADVERTISING: Disable your banner blocker (AdBlock, …) and click on our banner ads.

  • AFFILIATION: Make your purchases online by clicking on our affiliate links here Amazon.

  • DONATE: If you want, you can make a donation via Ko-Fi 💜.

  • WORD OF MOUTH: Invite your friends to come, discover the platform and the magnificent 3D files shared by the community!


Sharing and downloading on Cults3D guarantees that designs remain in makers community hands! And not in the hands of the 3D printing or software giants who own the competing platforms and exploit the designs for their own commercial interests.

Cults3D is an independent, self-financed site that is not accountable to any investor or brand. Almost all of the site's revenues are paid back to the platform's makers. The content published on the site serves only the interests of its authors and not those of 3D printer brands who also wish to control the 3D modeling market.

100% secure payment by credit card, PayPal, Apple Pay, Google Pay, etc.
View all payment options.